Digitaler Temperaturtransmitter Für Thermoelemente, Kopf- und Schienenversion Typen T16.H, T16.R

WIKA Datenblatt TE 16.01

weitere Zulassungen siehe Seite 10

Anwendungen

- Prozessindustrie
- Maschinen- und Anlagenbau

Leistungsmerkmale

- Für den Anschluss aller Standard-Thermoelemente
- Hohe Genauigkeit
- Parametrierung mit Konfigurationssoftware WIKAsoft-TT und Kontaktierung durch Schnellkontakt magWIK
- Anschlussklemmen auch von außen zugänglich
- EMV-Beständigkeit nach neustem Normenstand (EN 61326-2-3:2013)

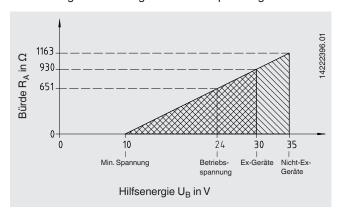
Abb. links: Kopfversion, Typ T16.H Abb. rechts: Schienenversion, Typ T16.R

Beschreibung

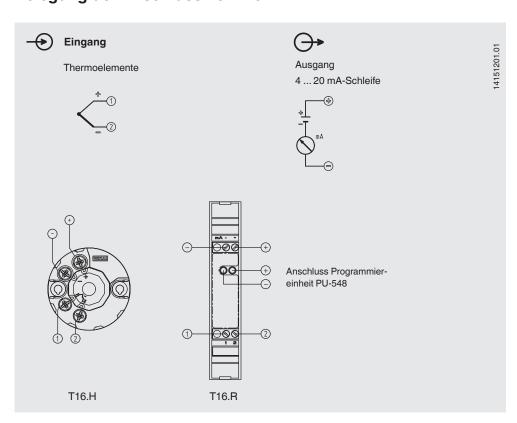
Diese Temperaturtransmitter sind konzipiert zum universellen Einsatz im Anlagen- und Maschinenbau, aber auch in der Prozesstechnik. Sie verfügen über eine hohe Genauigkeit und eine überdurchschnittliche Störsicherheit gegenüber elektromagnetischen Einflüssen. Über die Konfigurationssoftware WIKAsoft-TT und die Programmiereinheit Typ PU-548 sind die Temperaturtransmitter Typ T16 sehr einfach, schnell und übersichtlich parametrierbar.

Neben der Auswahl des Sensortyps und des Messbereichs können mit der Software die Fehlersignalisierungsrichtung, eine Dämpfung, mehrere Messstellenkennzeichnungen und eine Prozessanpassung hinterlegt werden. Des Weiteren verfügt die WIKAsoft-TT über eine Linienschreiberfunktionalität, mit der der Temperaturverlauf des am T16 angeschlossenen Thermoelements angezeigt werden kann.

Die Transmitter T16 verfügen über diverse Überwachungsfunktionalitäten wie eine Sensorbruchüberwachung und die Messbereichsüberwachung. Überdies führen diese Transmitter umfangreiche zyklische Selbstüberwachungsfunktionen aus.



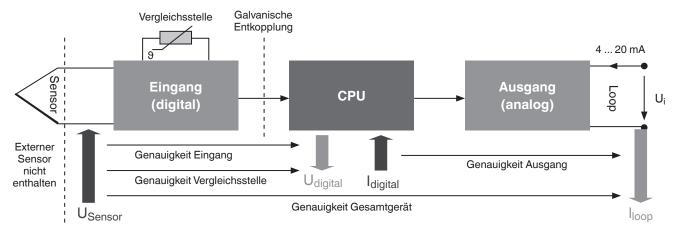
Technische Daten


Energieversorgung	
Hilfsenergie U _B	DC 10 35 V
Bürde R _A	$R_A \le (U_B - 10 \text{ V}) / 0.0215 \text{ A mit } R_A \text{ in } \Omega \text{ und } U_B \text{ in } V$
Ex-relevante Anschlusswerte	siehe "Sicherheitstechnische Kennwerte (explosionsgeschützte Ausführung)"
Isolationsfestigkeit (Prüfspannung, Eingang zu Analogausgang)	AC 1.500 V

Bürdendiagramm

Die zulässige Bürde hängt ab von der Spannung der Schleifenversorgung.

Belegung der Anschlussklemmen


Eingang des Temperaturtransmitters			
Thermoelement Typ	Max. konfigurierbarer Messbereich (MB)	Norm	Min. Messspanne (MS)
J	-210 +1.200 °C (-346 +2.192 °F)	IEC 60584-1	50 K
K	-270 +1.300 °C (-454 +2.372 °F)	IEC 60584-1	50 K
В	0 1.820 °C (32 3.308 °F)	IEC 60584-1	200 K
N	-270 +1.300 °C (-454 +2.372 °F)	IEC 60584-1	50 K
R	-50 +1.768 °C (-58 +3.214,4 °F)	IEC 60584-1	150 K
S	-50 +1.768 °C (-58 +3.214,4 °F)	IEC 60584-1	150 K
T	-270 +400 °C (-454 +752 °F)	IEC 60584-1	50 K
E	-270 +1.000 °C (-454 +1.832 °F)	IEC 60584-1	50 K
С	0 2.315 °C (32 4.199 °F)	IEC 60584-1	150 K
A	0 2.500 °C (32 4.532 °F)	IEC 60584-1	150 K
L (DIN 43710)	-200 +900 °C (-328 +1.652 °F)	DIN 43710	50 K
L (GOST R 8.585 - 2001)	-200 +800 °C (-328 +1.472 °F)	-	50 K

Werkskonfiguration		
Sensor	Typ K	
Messbereich	0 600 °C (32 +1.112 °F)	
Fehlersignalisierung	Zusteuernd	
Dämpfung	Aus	

Analogausgang, Ausgangsgrenzen, Signalisierung		
Analogausgang, konfigurierbar	Temperaturlinear nach IEC 60584/DIN 43710	
Ausgangsgrenzen nach NAMUR NE43	Untere Grenze 3,8 mA 20,5 mA	
Stromwert für Signalisierung, konfigurierbar nach NAMUR NE43	Zusteuernd < 3,6 mA (3,5 mA)	Aufsteuernd > 21,0 mA (21,5 mA)

Zeitverhalten	
Einschaltzeit (Zeit bis zum ersten Messwert)	Max. 4 s
Aufwärmzeit	Nach max. 45 Minuten werden die Genauigkeitsangaben erreicht (bedingt durch die interne Vergleichsstelle)
Sprungantwortzeit	< 0,9 s (typisch < 0,7 s)
Dämpfung	Konfiguration von 1 s bis 60 s möglich
Typische Messrate	Messwertaktualisierung ca. 8/s

Genauigkeitsangaben

Die produktspezifischen Genauigkeitsangaben beziehen sich auf das Gesamtgerät.

(Error_{gesamt} = Error_{Eingang} + Error_{Vergleichsstelle} + Error_{Ausgang})

Zur Bestimmung des Gesamtfehlers müssen alle möglichen Fehlertypen berücksichtigt werden. Diese sind in der nachfolgenden Tabelle zusammengefasst.

Leistungsmerkmale				
Referenzbedingungen	Kalibriertemperatur T _{ref} = 23 °C ±3 K (73,4 °F ±5,4 °F) Hilfsenergie U _{i_ref} = 24 V Atmosphärischer Luftdruck = 860 1.060 hPa Alle Genauigkeitsangaben beziehen sich auf die Referenzbedingungen.			
Genauigkeitsangaben / Gültigkeit	Messabweichung Eingang nach DIN EN 60770, NE145 1)	Mittlerer Temperaturkoeffizient (TK) je 10 K Umgebungstemperaturabweichung von T _{ref}	Langzeitdrift in Anleh- nung an IEC 61298-2 pro Jahr	
J / -150 +1.200 °C (-238 +2.192 °F)	≤ 0 °C: 0,45 K + 0,3 % MW ≥ 0 °C: 0,45 K + 0,045 % MW	±1,7 K	40 μV / 0,1 % MW (größerer Wert gilt)	
K / -150 +1.300 °C (-238 +2.372 °F)	≤ 0 °C: 0,6 K + 0,3 % MW ≥ 0 °C: 0,6 K + 0,06 % MW			
B / 450 1.820 °C (842 3.308 °F)	≤ 1.000 °C: 2,5 K + 0,3 % IMW - 1.000I ≥ 1.000 °C: 2,5 K			
N / -150 +1.300 °C (-238 +2.372 °F)	≤ 0 °C: 0,75 K + 0,3 % MW ≥ 0 °C: 0,75 K + 0,045 % MW			
R / 50 1.600 °C (122 2.912 °F)	≤ 400 °C: 2,2 K + 0,18 % MW ≥ 400 °C: 2,2 K + 0,015 % MW			
S / 50 1.600 °C (122 2.912 °F)	≤ 400 °C: 2,2 K + 0,18 % MW ≥ 400 °C: 2,2 K + 0,015 % MW			
T / -150 +400 °C (-238 +752 °F)	0 °C: 0,6 K + 0,3 % IMWI 0 °C: 0,6 K + 0,015 % MW			
E / -150 +1.000 °C (-238 +1.832 °F)	≤ 0 °C: 0,45 K + 0,3 % IMWI ≥ 0 °C: 0,45 K + 0,045 % MW			
C / 0 2.315 °C (32 4.199 °F)	≤ 1.000 °C: 2,2 K + 0 % MW ≥ 1.000 °C: 2,2 K + 0,175 % MW - 1.000			
A / 0 2.315 °C (32 4.199 °F)	≤ 1.000 °C: 2,4 K + 0 % MW ≥ 1.000 °C: 2,4 K + 0,175 % MW - 1.000	000		
L (DIN 43710) / -150 +900 °C (-238 +1.652 °F)	≤ 0 °C: 0,45 K + 0,15 % MW ≥ 0 °C: 0,45 K + 0,045 % MW			
L (GOST R 8.585 - 2001) / -150 +900 °C (-238 +1.652 °F)	≤ 0 °C: 0,45 K + 0,15 % MW ≥ 0 °C: 0,45 K + 0,045 % MW			
Vergleichsstelle	$\leq \pm 1,5 \text{ K } (\leq \pm 2,7 ^{\circ}\text{F})$	±0,1 K (±1,8 °F)	≤ 0.4 K ($\leq 0.72~^{\circ}\text{F})$	
Messabweichung Ausgang (DA-Wandler)	0,045 % der MS	0,06 % der MS	0,1 % der MS	
Einfluss der Hilfsenergie je 1 V Spannungsänderung von U _{i_ref}	±0,005 % der MS			

MW = Messwert MS = Messspann

¹⁾ Im Falle einer Störbeeinflussung durch hochfrequente elektromagnetische Felder in einem Frequenzbereich von 80 bis 400 MHz ist mit einer erhöhten Messabweichung von bis zu 0,8 % zu rechnen. Während transienten Störbeeinflussungen (z. B. Burst, Surge, ESD) eine erhöhte Messabweichung von bis zu 1,5 % berücksichtigen.

Beispiele Transmittergenauigkeit

Beispiel 1

Thermoelement Typ K Messbereich 0 400 °C → Spanne 400 K (720 °F) Umgebungstemperatur 25 °C (77 °F) Messwert 300 °C (572 °F)		
Eingang 300 °C > 0 °C → 0,6 K + 0,06 % x MW 0,6 K + (0,06 % x 300 °C)	±0,78 K (±1,4 °F)	
Ausgang 0,045 % x 300 K	±0,135 K (±0,243 °F)	
Vergleichsstelle 1,5 K	±1,5 K (±2,7 °F)	
Messabweichung (typisch) √Eingang² + Ausgang² + Vergleichsstelle²	±1,7 K (±3,06 °F)	
Messabweichung (maximal) Eingang + TK _{Eingang} + Ausgang + Vergleichsstelle	±2,42 K (±4,36 °F)	

Beispiel 2

Thermoelement Typ K Messbereich 0 600 °C → Spanne 600 K (1.080 °F) Umgebungstemperatur 45 °C (113 °F) Messwert 550 °C (1.022 °F)		
Eingang 550 °C > 0 °C → 0,6 K + 0,06 % x MW 0,6 K + (0,06 % x 550 °C)	±0,93 K (±1,67 °F)	
Eingang Temperaturkoeffizient $45 ^{\circ}\text{C} - 26 ^{\circ}\text{C} = 9 \text{K} \rightarrow 2 \text{x} 10 \text{K}$	±0,4 K (±0,72 °F)	
Ausgang 0,045 % x 600 K	±0,27 K (±0,49 °F)	
Ausgang Temperaturkoeffizient $45 ^{\circ}\text{C} - 26 ^{\circ}\text{C} = 19 \text{K} \rightarrow 2 \text{x} 10 \text{K}$ $0,06 ^{\circ}\text{x} 600 \text{K} \text{x} 2$	±0,72 K (±1,3 °F)	
Vergleichsstelle 1,5 K	±1,5 K (±2,7 °F)	
Vergleichsstelle Temperaturkoeffizient $45 ^{\circ}\text{C} - 26 ^{\circ}\text{C} = 19 \text{K} \rightarrow 2 \text{x} 10 \text{K}$	±4,0 K (±7,2 °F)	
Messabweichung (typisch) √Eingang² + TK _{Eingang} ² + Ausgang² + TK _{Ausgang} ² + Vergleichsstelle² + TK _{Vergleichsstelle} ²	±4,5 K (±8,1 °F)	
Messabweichung (maximal) Eingang + TK _{Eingang} + Ausgang + Vergleichsstelle	±7,8 K (±14,04 °F)	

Überwachung	
Fühlerbruchüberwachung	Konfigurierbar über Software Standard: zusteuernd
Messbereichsüberwachung	Überwachung des eingestellten Messbereiches auf Über-/Unterschreitung konfigurierbar Standard: deaktiviert
Schleppzeiger (interne Elektroniktemperatur)	Speichert die maximale Umgebungstemperatur (kein Zurücksetzen möglich)

Gehäuse	T16.H Kopfversion	T16.R Schienenversion
Material	Kunststoff PBT, glasfaserverstärkt	Kunststoff
Gewicht	ca. 50 g (ca. 1,76 oz)	ca. 0,2 kg (ca. 7,1 oz)
Schutzart	IP00 (Elektronik komplett vergossen)	IP20
Anschlussklemmen, Schrauben unverlierbar, Aderquerschnitt ■ Massiver Draht ■ Litze mit Aderendhülse	0,14 2,5 mm ² (24 14 AWG) 0,14 1,5 mm ² (24 16 AWG)	0,14 2,5 mm ² (24 14 AWG) 0,14 2,5 mm ² (24 14 AWG)
Empfohlener Schraubendreher	Kreuzschlitz (Pozidriv-Spitze) Größe 2 (ISO 8764)	Schlitz, 3 x 0,5 mm (ISO 2380)
Empfohlenes Anzugsdrehmoment	0,5 Nm	0,5 Nm

Umgebungsbedingungen	
Zulässige Umgebungstemperaturbereich	{-50} -40 +85 {+105} °C {-58} -40 +185 {+221} °F
Klimaklasse nach IEC 654-1:1993	Cx (-40 +85 °C / -40 +185 °F, 5 95 % r. F.)
Maximal zulässige Feuchte ■ Typ T16.H nach IEC 60068-2-38:2009	Prüfung max. Temperaturwechsel 65 °C (149 °F) / -10 °C (14 °F), 93 % \pm 3 % r. F.
■ Typ T16.R nach IEC 60068-2-30:2005	Prüfung max. Temperatur 55 °C (131 °F), 95 % r. F.
Vibrationsbeständigkeit nach IEC 60068-2-6:2008	Prüfung Fc: 10 2.000 Hz; 10 g, Amplitude 0,75 mm (0,03 in)
Schockfestigkeit nach IEC 68-2-27:2009	Beschleunigung / Schockbreite Typ T16.H: 100 g / 6 ms Typ T16.R: 30 g / 11 ms
Salznebel nach IEC 68-2-52:1996, IEC 60068-2-52:1996	Schärfegrad 1
Betauung	Typ T16.H: zulässig Typ T16.R: zulässig in senkrechter Einbaulage
Freifall in Anlehnung an IEC 60721-3-2:1997, DIN EN 60721-3-2:1998	Fallhöhe 1,5 m (4,9 ft)
Elektromagnetische Verträglichkeit (EMV) nach DIN EN 55011:2010, DIN EN 61326-2-3:2013, NAMUR NE21:2012, GL 2012 VI Teil 7	Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich) [HF Feld, HF Leitung, ESD, Burst, Surge]

^{ } Angaben in geschweiften Klammern beschreiben gegen Mehrpreis lieferbare Sonderheiten, nicht für ATEX-Versionen der Kopfversion und nicht für Schienenversion T16.R

Sicherheitstechnische Kennwerte (explosionsgeschützte Ausführung)

■ Typen T16.x-AI, T16.x-AC

Eigensichere Anschlusswerte für die Stromschleife (4 ... 20 mA)

Schutzniveau Ex ia IIC/IIB/IIA, Ex ia IIIC oder Ex ic IIC/IIB/IIA

Kenngrößen	Typen T16.x-AI, T16.x-AC	Typ T16.x-Al
	Gas-Ex-Anwendung	Staub-Ex-Anwendung
Klemmen	+/-	+/-
Spannung U _i	DC 30 V	DC 30 V
Stromstärke I _i	130 mA	130 mA
Leistung P _i	800 mW	750/650/550 mW
Innere wirksame Kapazität C _i	7,8 nF	7,8 nF
Innere wirksame Induktivität Li	20 μΗ	20 μΗ

Sensorstromkreis

Kenngrößen	Typ T16.x-Al	Typ T16.x-AC
	Ex ia IIC/IIB//IIA Ex ia IIIC	Ex ic IIC/IIB//IIA
Klemmen	1 - 2	
Spannung U _o	DC 6,6 V	
Stromstärke I _o	4 mA	
Leistung Po	10 mW	
Kennlinie	Linear	

Aufgrund der in den angewendeten Normen vorgeschriebenen Trennabstände ist der IS-Versorgungs- und Signalstromkreis sowie der IS-Sensorstromkreis als galvanisch miteinander verbunden anzusehen.

Umgebungstemperaturbereich

Anwendung	Umgebungstemperaturbereich	Temperaturklasse	Leistung P _i
Gruppe II	$-40~^{\circ}\text{C}~(-40~^{\circ}\text{F}) \le T_a \le +85~^{\circ}\text{C}~(+185~^{\circ}\text{F})$	T4	800 mW
	$-40~^{\circ}\text{C}~(-40~^{\circ}\text{F}) \le T_a \le +70~^{\circ}\text{C}~(+158~^{\circ}\text{F})$	T5	800 mW
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +55 ^{\circ}\text{C} (+131 ^{\circ}\text{F})$	T6	800 mW
Gruppe IIIC	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +40 ^{\circ}\text{C} (+104 ^{\circ}\text{F})$	N/A	750 mW
	$-40~^{\circ}\text{C}~(-40~^{\circ}\text{F}) \le T_a \le +75~^{\circ}\text{C}~(+167~^{\circ}\text{F})$	N/A	650 mW
	$-40~^{\circ}\text{C}~(-40~^{\circ}\text{F}) \le T_a \le +85~^{\circ}\text{C}~(+185~^{\circ}\text{F})$	N/A	550 mW

N/A = nicht anwendbar

Anmerkungen:

 U_{o} : Maximale Spannung eines beliebigen Leiters gegen den übrigen drei Leitern

 I_o : Maximale Ausgangsstrom für die ungünstigste Verbindung der internen Strombegrenzungswiderstände P_o : $U_o \times I_o$ geteilt durch 4 (lineare Charakteristik)

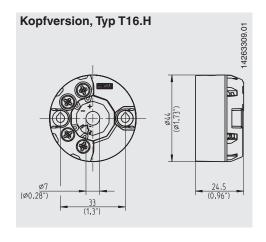
■ Typen T16.x-AN, T16.x-AE

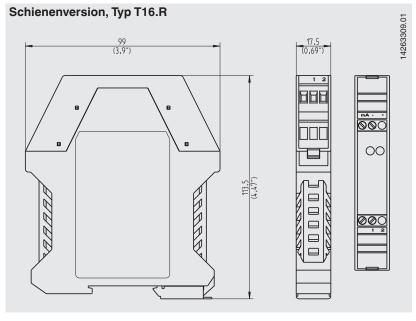
Versorgungs- und Signalstromkreis (4 ... 20 mA-Schleife)

Schutzniveau Ex nA IIC/IIB/IIA

Kenngrößen	Typen T16.x-AN, T16.x-AE	
	Gas-Ex-Anwendung	
Klemmen	+/-	
Spannung U _i	DC 35 V	
Strom I _i	21,5 mA	

Sensorstromkreis


Schutzniveau Ex nA IIC/IIB/IIA


Kenngrößen	Typen T16.x-AN, T16.x-AE
Klemmen	1-2
Leistung Po	2,575 V x 0,1 mA → 0,256 mW DC 2,575 V 0,1 mA

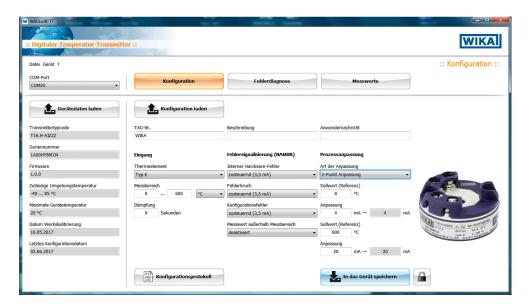
Umgebungstemperaturbereich

Anwendung	Umgebungstemperaturbereich	Temperaturklasse
Gruppe II	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +85 ^{\circ}\text{C} (+185 ^{\circ}\text{F})$	T4
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +70 ^{\circ}\text{C} (+158 ^{\circ}\text{F})$	T5
	$-40 ^{\circ}\text{C} (-40 ^{\circ}\text{F}) \le T_a \le +55 ^{\circ}\text{C} (+131 ^{\circ}\text{F})$	Т6

Abmessungen in mm

Die Abmessungen des Kopftransmitters sind abgestimmt auf DIN-Anschlussköpfe der Form B mit erweitertem Montageraum, z. B. WIKA Typ BSZ.

Der Transmitter im Schienengehäuse ist für alle Normschienen nach IEC 60715 geeignet.


Programmiereinheit PU-548 anschließen

Achtung:

Für die direkte Kommunikation über die USB-Schnittstelle eines PCs/Notebooks wird die Programmiereinheit Typ PU-548 benötigt (siehe "Zubehör").

Konfigurationssoftware WIKAsoft-TT

Zubehör

WIKA-Konfigurationssoftware: kostenloser Download unter www.wika.de

Тур	Ausführung	Bestellnummer
Programmiereinheit Typ PU-548	 Einfache Bedienung LED-Statusanzeige Kompakte Bauform Keine zusätzliche Spannungsversorgung notwendig, weder für die Programmiereinheit noch für den Transmitter Inkl. 1 magnetischer Schnellkontakt Typ magWIK (ersetzt Programmiereinheit Typ PU-448) 	14231581
Magnetischer Schnellkontakt magWIK	 Ersatz für Krokodil- und HART®-Klemmen Schnelle, sichere und feste Kontaktierung Für alle Konfigurations- und Kalibrierprozesse 	14026893
Adapter	 Passend zu TS 35 nach DIN EN 60715 (DIN EN 50022) bzw. TS 32 nach DIN EN 50035 Werkstoff: Kunststoff / CrNi-Stahl Abmessungen: 60 x 20 x 41,6 mm (2,3 x 0,7 x 1,6 in) 	3593789
Adapter	 Passend zu TS 35 nach DIN EN 60715 (DIN EN 50022) Werkstoff: Stahl verzinnt Abmessungen: 49 x 8 x 14 mm 	3619851

Zulassungen

Logo	Beschreibung	Land
(€	EU-Konformitätserklärung ■ EMV-Richtlinie EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich) ■ RoHS-Richtlinie	Europäische Union
⟨Ex⟩	■ ATEX-Richtlinie (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas	
IEC IEĈEX	IECEx (Option) Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [Ex ia IIC T6 T4 Ga]	International
FM APPROVED	FM (Option) Explosionsgefährdete Bereiche Class I, Division 1 oder 2, Groups A/B/C/D, T6 T4 Class I, Zone 0 oder 1, AEx ia IIC T6 T4	USA
(P)	CSA (Option) Explosionsgefährdete Bereiche Class I, Division 1 oder 2, Groups A/B/C/D, T6 T4 Class II, Division 1 oder 2, Groups E/F/G, T6 T4 / T135 °C, Class III Class I, Zone 0 oder 1, Ex ia [ia Ga] IIC T6 T4 Ga Class I, Zone 20 oder 21, Ex ia [ia Da] IIIC T135 °C Da	Kanada
ERCEx	EAC (Option) ■ EMV-Richtlinie ■ Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [0 Ex ia IIC T4/T5/T6] Zone 1 Gas [1 Ex ib IIC T4/T5/T6] Zone 2 Gas [2 Ex ic IIC T4/T5/T6] Zone 20 Staub [DIP A20 Ta 135 °C] Zone 21 Staub [DIP A21 Ta 135 °C] - Ex n Zone 2 Gas [Ex nA IIC T4/T5/T6] - Ex e Zone 2 Gas [2 Ex e IIC T4/T5/T6]	Eurasische Wirtschaftsgemeinschaft
©	GOST (Option) Metrologie, Messtechnik	Russland
6	KazInMetr (Option) Metrologie, Messtechnik	Kasachstan
	DNOP - MakNII (Option) ■ Mining ■ Explosionsgefährdete Bereiche - Ex i Zone 0 Gas [II 1G Ex ia IIC T6 T4 Ga] Zone 20 Staub [II 1D Ex ia IIIC T135 °C Da]	Ukraine
	Uzstandard (Option) Metrologie, Messtechnik	Usbekistan

Zertifikate/Zeugnisse (Option)

- 2.2-Werkszeugnis
- 3.1-Abnahmeprüfzeugnis

Zulassungen und Zertifikate siehe Internetseite

Bestellangaben

Typ / Explosionsschutz / Zusatzzulassungen / Zulässige Umgebungstemperatur / Konfiguration / Zeugnisse / Optionen

© 03/2017 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.

Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik.

Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

WIKA Datenblatt TE 16.01 · 06/2019

Seite 11 von 11

Alexander-Wiegand-Straße 30 63911 Klingenberg/Germany Tel. +49 9372 132-0 Fax +49 9372 132-406

info@wika.de www.wika.de